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Application of the Fractional Fourier Transform to Image
Reconstruction in MRI

Vicente Parot,1,2 Carlos Sing-Long,1,2 Carlos Lizama,2,3 Cristian Tejos,1,2 Sergio Uribe,2,4

and Pablo Irarrazaval1,2*

The classic paradigm for MRI requires a homogeneous B0 field
in combination with linear encoding gradients. Distortions are
produced when the B0 is not homogeneous, and several post-
processing techniques have been developed to correct them.
Field homogeneity is difficult to achieve, particularly for short-
bore magnets and higher B0 fields. Nonlinear magnetic com-
ponents can also arise from concomitant fields, particularly in
low-field imaging, or intentionally used for nonlinear encoding.
In any of these situations, the second-order component is key,
because it constitutes the first step to approximate higher-order
fields. We propose to use the fractional Fourier transform for
analyzing and reconstructing the object’s magnetization under
the presence of quadratic fields. The fractional fourier transform
provides a precise theoretical framework for this. We show how
it can be used for reconstruction and for gaining a better under-
standing of the quadratic field-induced distortions, including
examples of reconstruction for simulated and in vivo data. The
obtained images have improved quality compared with standard
Fourier reconstructions. The fractional fourier transform opens
a new paradigm for understanding the MR signal generated by
an object under a quadratic main field or nonlinear encoding.
Magn Reson Med 68:17–29, 2012. © 2011 Wiley Periodicals, Inc.
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The standard paradigm for MRI requires a strong mag-
netic field with uniform intensity and time-varying linear
encoding gradients across the entire field of view. How-
ever, deviations in the main field are common as uniform
fields are physically difficult to achieve and also because
of off-resonance effects from susceptibility changes. Such
frequency variations introduce an accumulating phase over
time, which cannot be demodulated easily as it varies spa-
tially. This problem is worse for stronger fields and for
sequences with long acquisition times. Great efforts are put
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in building the system with the highest possible homogene-
ity, for example, with passive or active shimming which
partially correct first- and second-order field variations.

Additionally, there has been an increasing interest in
spatial encoding by nonhomogeneous, nonbijective spatial
encoding magnetic fields (SEMs; Ref. 1). Starting from a
general nonlinear field concept, novel techniques includ-
ing PatLoc (1), O-Space (2), Null Space (3), and Phase-
Scrambled imaging (4–6) have all introduced the use of
second-order SEMs as the first and simplest approach in
simulations, custom-built hardware and experiments (7–
12). One of the challenges of these approaches is to have
an appropriate reconstruction technique.

Higher-order fields also appear as a natural component
of linear gradients. These concomitant fields can be well
approximated by quadratic functions (13,14). In several
applications, the magnitude of these fields is not negligible
and artifacts appear in image reconstructions (15,16), most
notably in very low-field or microtesla imaging (17,18).

Several image reconstruction methods have been pro-
posed to correct distortions, or to reconstruct an image
produced by nonhomogeneous fields, being an active field
of research (19–28). There is a well-known theoretical back-
ground for the linear correction approaches, in which an
exact analytical solution is provided (19,23). For second-
order and arbitrary field maps, there are several correction
techniques that typically trade-off correction accuracy for
computational load. Some of them are variations of the
basic conjugate phase (CP) approach (29–31), which will
be relevant to this work.

The fractional Fourier transform (FrFT) is a generaliza-
tion of the standard Fourier transform (FT) by means of the
continuous fractional order a, which covers densely the
entire transition between image (or time) domain (a = 0)
and the Fourier domain (a = 1; Ref. 32). The FrFT is a
special case of the linear canonical transform and can be
defined in several different ways leading to different phys-
ical interpretations and thus, it has become useful in many
applications (33–35). It has been shown that the FT prop-
erties are special cases of FrFT properties (32), and further
research has been done in discretization (36,37), fast com-
putation (38), and other aspects of the FrFT related to signal
processing (39–42).

It is of general knowledge that the magnetization of an
object under a linear magnetic field can be related to the FT
of the MR signal due to the mathematical equivalence of the
signal with the FT kernel. Similarly, the magnetization of
an object under a quadratic field can be related to its FrFT.
The kernel of the integral definition of the FrFT presents
a resemblance with the MR signal. This fact, along with
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the techniques involving second-order SEMs or concomi-
tant fields, places the FrFT as a potentially useful tool due
to its inherent connection with the second-order modula-
tion of the MR signal. The Fresnel transform, also a special
case of the linear canonical transform, has found a partic-
ular use in phase-scrambled imaging. The FrFT provides a
wider description of the problem and a stronger formula-
tion through its physical relation to the FT. For the purposes
of this work, let a quadratic MR system be one which has
a second-order magnetic field as a function of space, with
time-varying global amplitude. Thus, systems that have a
quadratic main field and/or quadratic SEMs fit into this
description.

In this article we present a theoretical description of the
relationship between the FrFT and the MR signal in the
presence of quadratic fields. This relation provides a the-
oretical framework to analyze the distortions produced by
quadratic fields and allows to define a reconstruction tech-
nique. We show how the FrFT corrects substantial phase
errors for constant gradient trajectories (two-dimensional
discrete Fourier transform (2DFT), for example) and cor-
rects geometric distortions for variable gradients trajec-
tories, such as echo planar imaging (EPI). Furthermore,
we also introduce a variable order FrFT, which turns out
to be similar to CP with an added weighting function,
although its interest is more theoretical than practical as the
improvements are minor, and CP is more general, because
it is also applicable to arbitrary field deviations.

THEORY

This section explains the connection between the FrFT and
quadratic MR systems. This framework allows to analyze
the acquired data in a fractional order polar space, from
where a visual insight can be extracted.

FrFT

The a-th order FrFT fa(ρ) = Fa{f }(ρ) of the signal f (u) for
0 < |a| < 2 can be expressed as an integral transform as
(taken from Ref. 32 with a slight change of notation)

fa(ρ) = Cα(ρ)
∫

f (u)exp(iπ[u2 cot α − 2ρu csc α]) du, [1]

Cα(ρ) ≡ exp(iπρ2 cot α)
√

1 − i cot α, α ≡ aπ/2, [2]

where cot is the cotangent, and csc is the cosecant of the
argument.

Note that the most notable difference between this equa-
tion and the FT is an extra quadratic phase in the kernel.

Throughout this section, u and ρ denote dimension-
less variables to maintain formal consistency between the
MRI and FrFT contexts. The independent variable ρ is the
pseudofrequency in any fractional domain, and u is the par-
ticular case of ρ for the 0-th order (the object domain). The
relation between the dimensionless u and its dimensional
counterpart x will be addressed in the “ρ–α space” section.

MRI Signal Under a Quadratic Main Field

We will consider the one-dimensional case where the main
field is a quadratic function of space and linear encoding

gradients are used. The extension to general quadratic MR
systems will be discussed later on. Let f (u) be the mag-
netization of the object of interest. The MR signal, in a
perfect uniform B0 field, ignoring intrareadout T1 and T2

relaxations and after demodulation at the Larmor frequency
ω0 is

s(t) =
∫

f (u)exp(−i2πk(t)u) du, [3]

where, as customarily defined, k(t) = γ/2π
∫ t

0 G(τ)dτ is the
k-space trajectory.

Whenever there is an inhomogeneous field B(u) = B0 +
p(u) as a function of space, the magnetization is modulated
by a time-dependent phase. For a quadratic field, p(u) =
p2u2 + p1u + p0. In this case the signal equation becomes

s(t) = exp(−i2πp0t)

×
∫

f (u)exp(iπ[−2p2tu2 − 2(k(t) + p1t)u]) du [4]

There is a remarkable similarity between this expression
and the FrFT defined in Eq. 1. Consequently, it is natural to
think that the FrFT can be used to reconstruct these data.

Link Between the MR Signal and the FrFT

To represent Eq. 4 in the form of Eq. 1, define

α(t) = cot−1(−2p2t) and

ρ(t) = k(t) + p1t
csc α(t)

= k(t) + p1t√
1 + 4p2

2t2

[5]

In this definition, both α and ρ are functions of time, but it
will be omitted for the sake of notation simplicity. Consider
α ∈ (0, π), which ensures csc α > 0, and cot−1 invertible,
so it can be written −2p2t = cot α and −2(k(t) + p1t) =
−2ρ csc α. With these variables the signal in Eq. 4 becomes

s(t) = exp(−i2πp0t)
∫

f (u)exp(iπ[u2 cot α − 2ρu csc α]) du

Using Eq. 1, the signal equation becomes a time-varying
order FrFT of the object

s(t) = exp(−i2πp0t)Cα(ρ)−1fa(ρ)

fa(ρ) = exp(i2πp0t)Cα(ρ)s(t).
[6]

Note that if α were constant and equal to π/2 (or a = 1),
the signal equation is recovered in terms of the standard
FT. The advantage of this relation is that it provides a well-
known framework for working with quadratic terms in the
magnetic field.

The two-dimensional (2D) extension is straightforward
and is shown in the Appendix.

In a quadratic MR system, both the main field and SEMs
can be modeled as quadratic functions of space. In this case,
it is clear that the signal of Eq. 3 becomes:

s(t) = exp(−i2πp0t)
∫

f (u)exp(iπ[h(t)u2 + g(t)u]) du [7]
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FIG. 1. Examples of typical trajectories over a quadratic field in the polar representation of ρ–α space. a: A constant gradient can be
represented as a circular path. b: A 2DFT bipolar gradient describes two circular arcs. c: The polar graph shows the ρ–α space in the readout
direction for seven readout echoes of an EPI trajectory. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.
com.]

for some suitable functions h and g. The change of variables
defined in Eq. 5 can be used to deduce α and ρ as functions
of t. Therefore, the analysis done for a quadratic main field
can be extended to quadratic MR systems with time-varying
quadratic fields. However, what follows focuses on the case
of a quadratic main field and linear gradients. This allows to
perform experiments in a standard MR system, as described
in “Materials and Methods” section.

The ρ–α Space

The terms α and ρ in Eq. 5 define a parametric trajectory
(ρ(t), α(t)) in what we call the ρ–α space. As α is an angle,
this space is conveniently represented in polar coordinates.
The trajectory in ρ–α space starts immediately after the
excitation (t = 0) in the frequency or Fourier direction
(α = π/2), and as time passes, it curves toward the object
axis (α = 0). What follows analyzes some common trajec-
tories using this framework. For the sake of simplicity, the
restriction on maximum slew rate is neglected.

Constant Gradient

Let us assume that the readout gradient G0 is constant and
starts at t = 0, as would be the case in a projection recon-
struction sequence. Assume also that the field is purely
quadratic p(u) = p2u2. Linear and constant terms can be
ignored without loss of generality, because the first is equiv-
alent to a change in the amplitude of the gradient, and the
second can be corrected during the signal demodulation.
Then k(t) would be

∫ t
0 G0dτ = G0t and the trajectory in ρ–α

space would be

α(t) = cot−1(−2p2t)

ρ(t) = k(t) + p1t√
1 + 4p2

2t2
= G0t√

1 + 4p2
2t2

which is the parametric form of a circle centered at
(G0/4p2, 0). Figure 1a shows this trajectory assuming
p2 < 0. The trajectory asymptotically approaches the object
axis (α = 0), as t increases. As expected, for small values
of t, the trajectory deviates little from the frequency axis
(α = π/2), and therefore distortions due to field variations
are small.

If p2 tends to zero, the quadratic component of the
field vanishes and the center of the circumference located
at G0/4p2 tends to infinity. Equivalently, the ρ–α space
trajectory becomes a straight line in the frequency direction

α(t) = cot−1(−2p2t) = π

2

ρ(t) = G0t√
1 + 4p2

2t2
= G0t.

Standard 2DFT readout

Considering again that the field is p(u) = p2u2, now assume
that the gradient is formed by a negative pulse of duration t0

followed by a positive one, as is standard in 2DFT readouts.
In this case,

k(t) =
∫ t

0
G(τ)dτ =

{−G0t 0 < t < t0

G0(t − 2t0) t0 < t.

Consequently, the trajectory in ρ–α space is given by

α(t) = cot−1(−2p2t)

ρ(t) = 1√
1 + 4p2

2t2
×

{−G0t 0 < t < t0

G0(t − 2t0) t0 < t.

This trajectory is formed by two circular arcs. The tra-
jectory describes one arc for the negative gradient centered
at (−G0/4p2, 0) and continues on the other one centered at
(G0/4p2, −G0t0), which corresponds to the positive gradi-
ent as shown in Fig. 1b.

EPI readout

If the gradient were a train of negative and positive pulses
as is used in EPI

G(t) =
{−G0 for 0 < t < t0, 3t0 < t < 5t0, . . .

G0 for t0 < t < 3t0, 5t0 < t < 7t0, . . .

the described ρ–α space trajectory would be composed by
a series of circular arcs centered at (±G0/4p2, ∓jG0t0/2),
j = 0, 1, 2, . . . as shown in Fig. 1c.
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FIG. 2. Example of a one-dimensional 2DFT trajectory in the polar representation of ρ–α space represented by the continuous line and
its reconstruction interpretation represented by the dashed line. a: Standard Fourier interpretation. b: Fractional Fourier interpretation.
c: Variable order fractional Fourier interpretation.

Spectroscopy

If the sequence has no gradients, as in a pure spectroscopic
acquisition, the trajectory will only depend on the linear
term of the field p1

α(t) = cot−1(−2p2t)

ρ(t) = k(t) + p1t√
1 + 4p2

2t2
= p1t√

1 + 4p2
2t2

and will have the shape shown in Fig. 1a, centered at
(p1/4p2, 0). If p1 = 0, the trajectory is a singularity at the
origin of the ρ–α space. In this case, it is more convenient to
represent the space in Cartesian coordinates (ρ, a), and the
readout trajectory ρ = 0 becomes equivalent to acquiring
the continuous component of the FrFT for the orders a.

Reconstruction

In the FrFT framework, the reconstruction problem
requires knowing both the pseudofrequency and the trans-
form order where the data was acquired. These can be
determined using Eq. 5. The object will be the solution to
the inverse of Eq. 6 (ignoring the constant field shift p0)

f̂ (u) = F−a{fa(t)(ρ(t))}(u) = F−a{Cα(t)(ρ(t))s(t)}(u).

This expression explicits the time dependence of α. This
dependency implies that the fractional order changes with
time and therefore a standard inverse FrFT is not possi-
ble. We propose two alternatives for the reconstruction:
the inverse FrFT, which assumes an approximation for
the ρ–α space; and the variable order inverse fractional
Fourier reconstruction (VO-FrFT). These techniques are
compared with the standard inverse Fourier reconstruc-
tion (FT). Figure 2 shows the actual ρ–α space trajectory and
the assumption of the reconstruction scheme for a standard
2DFT readout.

Standard Inverse Fourier Reconstruction

This is equivalent to assuming that α ≡ π/2, cot α ≡ 0 and
Cπ/2(ρ) ≡ 1. The reconstructed object is

f̂ (u) = F−1{s(t)}(u).

The samples are acquired in the curved trajectory but are
interpreted as being in the frequency axis (vertical dashed
line of Fig. 2a). The distortions in the image will depend on
how much the trajectory deviates from the vertical line in
the ρ–α space . This reconstruction can be computed using
the FFT algorithm.

Inverse Fractional Fourier Reconstruction

It assumes that the samples are acquired at a constant order,
i.e. on a straight line in ρ–α space during readout, and that
locations along the fractional domain are uniformly spaced.

The reconstruction and sampling locations are closer
than in the FT reconstruction and the inverse expression is
exactly an inverse FrFT

f̂ (u) = F−ā{Cᾱ(ρ(t))s(t)}(u),

where ā (or ᾱ) is the order (or angle for the straight line) at
the origin. This reconstruction is a better approximation
and improves the accuracy of the reconstructed object’s
phase over the standard Fourier reconstruction. Using the
definitions in Eqs. 1 and 2, it can be seen that

f̂ (u) = exp(−iπu2 cot ᾱ)| csc ᾱ|
∫

s(t)exp(i2πuρ csc ᾱ) dρ.

[8]

In the case of a sequence with multiple echoes during
one readout, this approximation may not be useful as the
trajectory differs from a single constant line and the origin
is sampled with multiple different angles. In the case of an
EPI readout (Fig. 1c), the trajectory can be approximated
with a constant angle for each echo, which approximates
better the angle of each sample. Reconstruction using the
inverse FrFT can be implemented using any of the discrete
algorithms available in the literature (32), with computa-
tion complexity O(N log N ) and additional overhead times
when compared with FFT.

Variable Order Inverse Fractional Fourier Reconstruction

This approach uses the actual locations where the data
were acquired. To solve the variable order inverse prob-
lem we propose a discrete approach, which fits well with
the discrete samples and can also provide a continuous
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reconstruction. Each sample in ρ–α space (ρn, αn) acquired
at t = tn corresponds to one coefficient of the FrFT of order
an = 2αn/π. Each of these coefficients is the projection of
the object into the kernel function of the corresponding
fractional order and position. These kernels are commonly
known as “chirp” functions and are given by the inverse
FrFT of order an of a delta function located at ρ = ρn (32):

∆−an (u) = F−an {δ(ρ − ρn)}(u)

= C*
αn

(ρn) exp(−iπ[u2 cot αn − 2uρn csc αn]),

where * denotes complex conjugate. From the set of all
possible chirp functions, the object is projected to the sub-
set of (ρn, αn) pairs corresponding to the sampling locations
traversed by the trajectory during readout. Reconstruction
from these coefficients is feasible as long as the trajec-
tory is well conditioned. In a discrete sense, this means
that the trajectory and sampling locations must define an
approximately orthogonal square encoding matrix. From
this general idea, whenever a well-conditioned trajectory
and uniform sampling density is used, a simple sum of the
contributions of each projection can give a good estima-
tion of the generating object. Recalling that the samples are
defined by

fan (ρn) = Cαn (ρn)s(tn),

this yields an estimation of the object as the weighted sum
of all contributions, one for each of N samples,

f̂ (u) =
N∑

n=1

fan (ρn)∆−an (u)

=
N∑

n=1

| csc αn|s(tn)exp(−iπ[u2 cot αn − 2uρn csc αn]).
[9]

If the uniform sampling density assumption is dropped,
it would be necessary to incorporate a factor proportional
to ρ̇(tn) which arises from the underlying discretization of
the inverse FrFT integral by Riemann sums. To use this
reconstruction method with 2DFT and EPI trajectories, it
is assumed that they are approximately well conditioned
within a limited quadratic field component, as they are
inherently designed for k-space acquisition and not to
match ρ–α space positions of orthogonal projections.

The nominal computational complexity of this method
is O(N 2), and its implementation cannot be based on the
FFT. The 2D extension of this reconstruction method is
presented in the Appendix.

The object f̂ (u) in Eq. 9 can be evaluated for any contin-
uous value of u. Note that if αn is substituted by π/2 this
formula becomes the definition of the discrete frequency
Fourier transform, or the Discrete Fourier Transform (DFT),
if u is also evaluated at discrete values. If αn is substituted
by another fixed angle, other than π/2, the reconstruction
is also the discrete frequency fourier transform, but with an
extra phase and an additional constant scaling factor. This
is the discrete version of the inverse FrFT.

It is relevant to note that the CP method reconstructs
removing the phase modulation due to field inhomogeneity

from the signal. In one dimension and with uniform sam-
pling density, the CP reconstruction is (29,30)

f̂ (u) =
N∑

n=1

s(tn)exp(i2π[knu + tnp(u)]), [10]

where the pair (tn, kn) denotes the sampled trajectory in k-
space and p(u) is an arbitrary frequency deviation. Note that
this method also assumes the trajectory to be well condi-
tioned, because the independence of the summed functions
heavily depends on the trajectory and the arbitrary field
p(u). Considering only the first- and second-order terms of
its Taylor approximation, the inhomogeneity is reduced to
p(u) = p2u2 + p1u. In this case, the difference between the
VO-FrFT and CP can be appreciated in Eq. 9, substituting
the definitions in Eq. 5, so that VO-FrFT method can be
written as:

f̂ (u) =
N∑

n=1

| csc αn|s(tn)exp(i2π[knu + tnp(u)]).

Notably, the VO-FrFT method and a second-order
approximated field CP reconstruction differ in the mod-
ulating factor | csc αn|. These weights arise naturally as a
consequence of using the FrFT, assuming uniform k-space
sampling density. Additionally, this relation shows that the
implementation of the VO-FrFT will have a similar compu-
tational load as a CP reconstruction method. Consequently,
techniques to speed up CP reconstructions can be used for
the same purpose for VO-FrFT reconstructions.

Units

So far, ρ and u have been used as dimensionless variables.
To ensure the validity of the former analysis and extend it
to practical cases, the normalization u = x/q is used, by
which

f (u) = f (x/q) = √
qf̃ (x) [11]

with f̃ (x) the dimensional object. The scale parameter q
has the same dimension as x. For the purpose of the FrFT
implementation, it can be assumed that the magnetiza-
tion is mostly concentrated within the field of view (FOV),
whereas its spectrum is mostly concentrated in the sam-
pled region of k-space. In the time–frequency plane, this
means that the energy is mostly concentrated over an ellip-
tic region. The suitable parameter for q is the one that
transforms this elliptic region into a circular one. This is
achieved by setting q = FOV/

√
N (43). This normaliza-

tion is applied independently for each dimension for the
n-dimensional case.

MATERIALS AND METHODS

The purpose of the experiments is twofold. First, to
study numerically the problem of recovering an image
from the MR signal when the main field is quadratic
and the gradients are linear. Second, to prove that our
reconstruction is useful as a field inhomogeneity correc-
tion algorithm for images acquired in traditional systems
and when the inhomogeneity has an important quadratic
component. All MRI images in this work were acquired
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with a Philips Intera 1.5T scanner. Linear shimming was
disabled during all acquisitions and no higher-order active
shimming was used. The images were acquired using
mostly default parameters from preloaded sequences in
the system. Complex-valued image reconstructions were
performed off-line.

Numerical Phantom

In our first experiment, the MR signal for a 2D, real-valued
analytical magnetization phantom was simulated by eval-
uating Eq. A1 using adaptive quadrature in MATLAB (44),
nesting a one-dimensional evaluation for each dimension.
The phantom was designed as a simplified version of a
real reference phantom with the same dimensions. The
acquisition time of each sample and k-space locations were
determined considering 2DFT gradients from a standard
acquisition. A cartesian matrix of 256 × 256 samples was
simulated with FOV of 25.6×25.6 cm and echo time (TE) =
56 ms. Each complete readout in the sequence takes 28 ms.

Two MR signals were simulated, the first with a uni-
form B0 field and the second with a quadratic field with
coefficients p2x = −2.149 Hz/cm2, p2y = −2.3846 Hz/cm2,
p1x = 0 Hz/cm, p1y = 0 Hz/cm, and p0 = 0 Hz. The
quadratic deviation was chosen to be approximately double
the measured quadratic component from a real phantom to
enhance the effect (while keeping it within a valid physical
range). These parameters define the sampling locations of
the ρ–α space trajectory, of which fractional domain angles
are shown for direction y in Fig. 3 with a solid line. The
reconstructed image with standard FT and uniform B0 was
the reference image which incorporates all the inherent
distortions of sampling the k-space and the discrete recon-
struction. The simulated MR data under a quadratic field
was reconstructed with the standard inverse FT, the inverse
FrFT, the inverse VO-FrFT, and CP.

To study the performance of these methods when there
is error in the estimation of the quadratic component,
the reconstruction was repeated using different values of
p2x and p2y (from 0× to 2× in steps of 0.125×). See the
Appendix for a theoretical estimation of uncertainties.

MRI Phantom

In a second experiment, a phantom was scanned with a
fast field echo (FFE) EPI sequence, with a scan matrix of
128×128 samples, FOV of 24×24 cm, slice thickness 5 mm,
flip angle 23◦, and Pulse repetition time/TE = 650/41 ms.
These data were acquired with a number of sample averages
of 16 using a Q-body coil. The EPI factor in this sequence
was 63. Each complete readout in this sequence took 76 ms.
These parameters produce a long readout sequence in
which there is a noticeable effect of the field inhomo-
geneities that are inherent to the MR system and object.
For the FrFT a constant angle per echo was used. The FrFT
approach and the VO-FrFT used a quadratic fit for the mea-
sured field map, whereas the CP reconstruction used the
measured field map.

In vivo Study

An in vivo study was done scanning the brain of a volun-
teer, the images were acquired using the same sequence,

FIG. 3. Fractional angle α(t) throughout the readout of experimental
trajectories. The horizontal axis shows time in ms, with echo time in
the origin. The solid, dashed, and dotted lines represent the numer-
ical phantom, MRI phantom, and in vivo experiments, respectively.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

except for number of sample average which was now 8 and
from the receiving coil which was now a standard quadra-
ture head coil. A slightly angled transversal slice of the
brain was selected where the field showed an important
quadratic component.

Field Maps

In each experiment, structural images were acquired with
short readout time sequences to minimize the effect of field
inhomogeneity. The magnetic field was measured from
these images with different TE (45).

To fit quadratic functions to the field maps, a maximum
likelihood method was used that minimizes the weighted
squared error between the measured field map and a para-
metric separable second-order polynomial. The weights
were the mean magnitude of the corresponding pixels. This
ensures that the field map information was incorporated
correctly depending on the local intensity of the signal and
its signal to noise ratio.

In the phantom study, the field map was determined
along a structural reference image using ∆TE = 3 ms and
pulse repetition time and TE equal to 14 and 6.1 ms, respec-
tively. A transversal slice of the physical phantom was
selected for this study.

For the in vivo study, the anatomy causes further field
deviations which cannot be approximated by the fitted
function for the entire FOV. An elliptical region of interest
was selected.

Image Reconstruction

FT computations were done using FFT and took less than
1 s in all cases. FrFT and VO-FrFT reconstructions were
done by computing Eq. A2, which took 10 min for a 256 ×
256 matrix and 1.5 min for a 128×128 matrix, with a Quad-
Core 2.4 GHz CPU. The FrFT reconstruction used a constant
angle value for each echo, using the value of the angle
when ρu = 0. This is equivalent to compute the 1D inverse
FrFT in the readout direction, along which the angles are
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FIG. 4. Reference image for numerical study. This is an inverse
Fourier reconstruction of an undistorted simulated signal.

assumed to be constant but not in the phase direction,
where the angle is different for each sample. For simplicity
of implementation, in this work, we did not take advan-
tage of the fast implementation of the FrFT which would
speed it up considerably. The VO-FrFT reconstruction took
into account the exact position in ρ–α space of each sam-
ple. Distance units of the results were scaled using Eq. 11 to
map the estimated object into the dimensional coordinates.
CP reconstructions were computed using the 2D extension
of Eq. 10, with p(u) the exact measured or simulated fre-
quency deviation and were found to require essentially the
same computing time as VO-FrFT reconstructions.

RESULTS

To compare the performance of the reconstruction meth-
ods, absolute value images were compared using the root
mean squared error (RMSE) and the mean absolute error
(MAE). These two metrics heavily penalize images that
have only contrast differences, such as an intensity scaling.

FIG. 5. Reconstruction results for 2DFT simulations with an isotropic quadratic field. In each column, the reconstructed image is shown in
magnitude and phase, and it is also shown the difference between absolute images and the reference object. Reconstructed magnitudes
range from 0 to 1, and differences are shown with corresponding amplitude from −0.5 to 0.5. Phase images range from −π to π. Phase values
have been set to zero, when magnitude is below 5% of the maximum. a: Standard inverse Fourier reconstruction. b: Inverse fractional Fourier
reconstruction. c: Variable order inverse fractional Fourier reconstruction considering exact trajectory. d: Conjugate phase reconstruction
using the simulated field map.
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For this reason a third metric was used: mutual informa-
tion (46), which is invariant to intensity scaling and is
needed, because in some cases the reference image was
acquired with a different MR contrast than the experimen-
tal MR data. Note that, in contrast with the RMSE and the
MAE, higher values of mutual information imply that the
compared images are closer to each other.

Numerical phantom

The reference image of the numerical phantom can be seen
in Fig. 4. The distortions produced by a quadratic field
when using the standard Fourier reconstruction can be
seen in Fig. 5a. It shows a geometric distortion, charac-
teristic of data acquired under field inhomogeneity, which
is proportional to the local field deviation from the cen-
tral frequency. The phase of the reconstructed image has
a complex quadratic modulation, although the analytical
phantom did not have phase. An intensity nonuniformity
distortion is also noted that can be described as a linear
increase of intensity from the lower to the upper region of
the phantom. The maximum deviations were within 12%
of the correct value. This can be seen also in the inten-
sity difference image (Fig. 5a). As expected, the MR data
acquired with a quadratic main field cannot be correctly
recovered by the FT method.

As expected from Eq. 8, the FrFT reconstruction shows
identical magnitude as the FT reconstruction (Fig. 5a) but
with a phase much closer to the actual phase (Fig. 5b).
Indeed, the intensity difference image (Fig. 5b) is similar to
the one produced by the FT reconstruction. Additionally,
both approaches are unable to recover exactly the image
geometry. The VO-FrFT reconstruction (Fig. 5c) recovers
the original image, without any of the image distortions in
magnitude or phase introduced by the FT and FrFT recon-
structions. Finally, the CP reconstruction (Fig. 5d) recovers
the geometry of the phantom, but it adds a phase that
does not belong to the reference image. The intensity of
the reconstructed image also shows differences with the
reference image, as evidenced by the intensity difference
image (Fig. 5d). The visual results are supported by the

Table 1
Comparison of the Reconstruction Error for the Numerical Phantom
Study.

Method RMSE Mutual information MAE

FT 20.41 1.33 × 105 7.16
FrFT 20.41 1.33 × 105 7.16
VO-FrFT 1.68 1.58 × 105 0.86
CP 5.35 1.48 × 105 2.82

values for the comparison metrics in Table 1. Only the
VO-FrFT reconstructs the exact image, outperforming the
CP method. Note that this numerical experiment has been
designed as an ideal case to test the reconstruction of the
simulated MR signal from a quadratic field and does not
necessarily reflect a real setting, where pure quadratic fields
are not practically ocurring. In many situations, it can also
be that the phase is discarded, because only the magnitude
image is of interest. Note also that differences in results
between the VO-FrFT and CP methods arise in this case
solely from the | csc αn| weights present in the VO-FrFT
computation.

The sensitivity analysis in Fig. 6 shows how the VO-
FrFT has the best indexes for all metrics and how these
metrics deteriorate as the field used for the reconstruction
deviates from the actual field. Note that different metrics
discriminate differently both methods. The RMSE shows
a very close performance of the VO-FrFT and CP methods
(Fig. 6a), being both better than FT and FrFT methods up
to a scaling factor of 1.85. Considering mutual information,
the VO-FrFT outperforms the other three methods for scale
factors as high as 1.9 (Fig. 6b). Considering MAE, the VO-
FrFT outperforms all methods for the whole scaling factor
range used.

MRI Phantom

The phantom is shown in Fig. 7 (without distortions). The
particular combination of our MR system with its intrinsic
inhomogeneity and the scanned phantom produced a field

FIG. 6. Measurement of the distortion in absolute reconstructions produced by scaling the quadratic component of the field as an input to
the reconstruction method. a: Root mean squared error. b: Mutual information. c: Mean absolute error. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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FIG. 7. Low-distortion image used as the reference image for the
phantom study.

map that resembles an isotropic quadratic function with its
highest intensity in the center of the magnet as shown in
Fig. 8. The coefficients of the quadratic function were p2x =
−1.24 Hz/cm2, p2y = −1.32 Hz/cm2, p1x = −1.81 Hz/cm,
p1y = −1.92 Hz/cm, and p0 = 26.29 Hz, and the maximum
likelihood fitting error was 2.11 Hz. A profile of the mea-
sured field and its fitted function can be seen in Fig. 8c. The

FIG. 8. Field map fit for the MRI phantom study. a: Measured field
map. b: Fitted field map. c: Along the marked column, the measured
magnetic field (solid line) can be well approximated by a quadratic
function (dashed line). Field images range from −140 Hz to 40 Hz.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

FIG. 9. Reconstruction results for the MRI phantom study. a: Stan-
dard Fourier reconstruction. b: Fractional Fourier reconstruction
using the fitted quadratic field map and constant angle approx-
imation in each echo. c: Variable order fractional Fourier recon-
struction using the fitted quadratic field map. d: Conjugate phase
reconstruction using the measured field map.

trajectory angles determined by the y -direction coefficients
are shown in Fig. 3 with a dashed line.

In this study, the phase information of the object is
unknown, because it cannot be acquired with the same
contrast as the distorted object without the effect of the
quadratic field map. For this reason, only the magnitude of
the reconstructions was compared against the magnitude
of the low-distortion image.

The FT reconstruction shown in Fig. 9a produces geo-
metric and intensity distortions similar to those observed
in the simulation study. The FrFT using constant angle
per echoes (Fig. 9b) recovers a better geometry of the sam-
ple, albeit with significant Gibbs and ghosting artifacts.
Figure 9c shows that the VO-FrFT partially eliminates these
artifacts, correctly reconstructing the geometry and inten-
sity of the reference image. We believe that the ghosting arti-
facts persist, because the field map is not exactly a quadratic
function of space. Additionally, some of the artifacts may
be related to an incomplete EPI ghosting correction which
is present in all reconstructions. Finally, the CP reconstruc-
tion (Fig. 9d) also recovers the geometry and corrects the
ghosting artifacts but is unable to correct the Gibbs ringing
artifacts. The CP reconstruction additionally shows distor-
tions related to noise that are present only in this approach.
After CP, the VO-FrFT method has the best reconstruction,
as can be seen in Table 2. The difference between VO-FrFT
and CP can be explained by a trade-off between the ghost-
ing artifacts in the VO-FrFT reconstruction versus the noise
present in the CP reconstruction.
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Table 2
Comparison of the Reconstruction Error for the MRI Phantom Study

Method RMSE Mutual information MAE

FT 60.64 1.42 × 105 31.07
FrFT 99.89 1.19 × 105 65.31
FrFT (c.p.e) 35.08 1.51 × 105 21.28
VO-FrFT 33.63 1.51 × 105 19.61
CP 28.03 1.59 × 105 15.73

In vivo Study

Figure 10 shows the low-distortion image for the volunteer
experiment. The field can be approximated by a quadratic
function within an elliptical region of interest as shown
in Fig. 11. The coefficients for the fitted quadratic func-
tion were p2x = −0.23 Hz/cm2, p2y = −0.78 Hz/cm2,
p1x = 0.11 Hz/cm, p1y = 5.28 Hz/cm and p0 = 62.08 Hz,
and the maximum likelihood fitting error was 0.09 Hz.
The trajectory angles determined by the y -direction coeffi-
cients are plotted in Fig. 3 with a dotted line. Figure 10
also shows a superimposed contour showing some key
geometric features of the sample, as a visual aid for com-
paring the geometric distortions in the reconstructions. The
FT reconstruction (Fig. 12a) presents geometric distortions
in agreement with the artifacts observed in the numerical
and phantom experiments. The FrFT reconstruction with

FIG. 10. Low-distortion image used as the reference image for the
in vivo study. The superimposed contours show the location of some
key features in the image.

constant angle in each echo (Fig. 12b) corrects most of
the geometric distortions present in the FT reconstruction
(Fig. 12c), especially in the region of interest, where the fit-
ted quadratic function is a close approximation of the field

FIG. 11. Field map for the in vivo study. b: Measured field map. c: Fitted field map. Within the elliptical region of interest in (a), the measured
magnetic field can be approximated by a quadratic function as shown in (d) with solid and dashed lines, respectively, for the marked column.
Field images range from −140 Hz to 40 Hz. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 12. Reconstruction results for in vivo study. The superimposed
contours show the location of some key features of the reference
image in Fig. 10. a: Standard Fourier reconstruction. b: Fractional
Fourier reconstruction using the fitted quadratic field map and
constant angle approximation in each echo. c: Variable order frac-
tional Fourier reconstruction using the fitted quadratic field map.
d: Conjugate phase reconstruction using the measured field map.

map. The VO-FrFT reconstruction is very similar to the
FrFT reconstruction, as the constant angle in each echo is
a close approximation of the exact angles of the trajectory
in each sample. Finally, the CP reconstruction (Fig. 12d)
shows both geometric and intensity artifacts, along with the
noise artifacts present in Fig. 9d. In this case, the quantita-
tive comparison depends on which metric is used, as can
be seen in Table 3. For example, the MAE shows that the
FrFT with constant angle per echo and VO-FrFT are those
with the least reconstruction errors, whereas the RMSE and
mutual information show that the CP reconstruction is the
one with the least reconstruction errors.

DISCUSSION AND CONCLUSIONS

Traditionally, MRI reconstruction is done by an inverse
FT. This method rests on the base that the object has
been magnetized with a perfectly uniform magnetic field
and encoded using linear gradients. In a situation where
these conditions do not hold and nonlinear fields come
into account, second-order components are their first and
simplest approximation.

We presented a new framework for quadratic field MR
analysis based on the FrFT. It establishes the theoretical
relation between image space and quadratic magnetic field
signal frequency space, allowing native second-order field
image reconstruction (or correction). The FrFT transform,
which is a generalization of the FT, has a quadratic phase

term in its integral kernel, so that there is a natural link
between the signal obtained from an object magnetized
with a quadratic field and its FrFT. This new framework
and the newly introduced ρ–α space give a visual insight to
the MR acquisition process and also provide a meaningful
graphical representation that shows the relation between
the image domain, the standard k-space and FrFT domains.
The theoretical derivation is based on the presence of a
quadratic static main field and linear encoding gradients
and can be extended to a general quadratic system where
the quadratic field can be a combination of main field and
time-varying encoding gradients.

The FrFT reconstruction with a fixed order for the entire
readout corrects phase, and a fixed order for each echo
in a multiple echo trajectory corrects geometric distor-
tions, as compared to the traditional FT. From a practical
point of view, this is an important improvement when
the reconstruction time is important, because the FrFT
can be computed with a fast algorithm. Additional work
is needed to explore possible combinations of FrFT geo-
metric correction with deformation techniques such as the
gradwarp algorithm (47) that would enable to map a geo-
metrically distorted but otherwise artifact-free image from
FT reconstruction to the corrected geometry of the FrFT
reconstruction.

Numerical experiments showed that the VO-FrFT,
can effectively reconstruct MR signals under simulated
quadratic fields, correcting geometry and intensity distor-
tions better than FT and CP reconstructions. Experiments
in an actual MR system show that, under nearly quadratic
fields, our method is able to approximately reconstruct
the image and correct some of its geometric distortions,
improving over the FT reconstruction, but not exceed-
ing the CP correction, which takes into account not only
second-order components but also the exact measured
field. The VO-FrFT method should not be preferred over the
CP method for inhomogeneity correction, unless the non-
homogeneous field component is exactly a second-order
function.

One effect of analyzing the MR data using ρ–α space is
that it is scaled down by a factor csc αn ≥ 1. This scaling
is not homogeneous in k-space but depends on the time
map of the sequence. For a given sequence planned for
ordinary k-space acquisition, this fact is manifested as a
resolution loss. These resolution losses could be reduced
using stronger gradients with an ordinary sequence or mod-
ifying the sequence to fill ρ–α space at corrected locations.
Additionally, new trajectories should be designed to fill ρ–α

space in order to meet image resolution requirements. The-
oretical advances are also needed to replace the Nyquist
sampling rate for k-space with a similar criterion which

Table 3
Comparison of the Reconstruction Error for the In vivo Study

Method RMSE Mutual information MAE

FT 14.02 1.28 × 105 6.81
FrFT 13.06 1.34 × 105 6.09
FrFT (c.p.e) 13.00 1.33 × 105 5.84
VO-FrFT 13.00 1.33 × 105 5.84
CP 12.59 1.39 × 105 6.31
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would indicate how information density is distributed
along ρ–α space.

Our approach based on the FrFT gives a new theoreti-
cal MR framework between image space and signal space
for quadratic field MR systems, allowing native image
reconstruction for second-order main fields.

APPENDIX A: EXTENSION TO TWO DIMENSIONS

To extend the correspondence between the signal equa-
tion and the FrFT definition derived in “Link Between
the MR signal and the FrFT” section, it can be written
in vector form using the separable FrFT definition. In two
dimensions, the FrFT is (32)

fa(ρ) = Cα(ρ)
∫

f (u)exp(iπ(uTAu − 2uTBρ))du

with

u =
[
u
v

]
, ρ =

[
ρu

ρv

]
, a =

[
au

av

]
, α = a

π

2
=

[
αu

αv

]

A =
[
cot αu 0

0 cot αv

]
, B =

[
csc αu 0

0 csc αv

]

and Cα(ρ) = √
1 − i cot αu

√
1 − i cot αv exp(iπρT Aρ).

To write the signal equation in 2D, the field can be written
as p(u) = uTp2u + uTp1 + p0, with

p1 =
[
p1u

p1v

]
and p2 =

[
p2u 0
0 p2v

]
,

so that it becomes

s(t) = exp(−i2πp0t)

×
∫

f (u)exp(iπ(−2uTp2ut − 2uT(k(t) + p1t)))du [A1]

with k(t) = [ku(t) kv (t)]T, expanded as

s(t) = exp(−i2πp0t)
∫∫

f (u, v )exp (−i2π((p2uu2 + p2v v2)t

+ (ku(t) + p1ut)u + (kv (t) + p1v t)v ))dudv .

Note that it is also assumed that the second-order term of
the field is diagonal in the coordinate axis, i.e. the terms
outside the diagonal of p2 are zero to match the separable
form of the FrFT. If this is not the case, a change of variables
can be performed on x, y , and u, v to diagonalize this term.
Note that both A and B are diagonal matrices that depend
on α. A four-dimensional ρ–α space is defined by the change
of variables

cot αu = −2p2ut

cot αv = −2p2v t

ρu csc αu = ku(t) + p1ut

ρv csc αv = kv (t) + p1v t

which is equivalent to solve for α and ρ the matrix equa-
tions A(α) = −2p2t and B(α)ρ = k(t) + p1t. Finally, the

signal equation is expressed in terms of a 2D varying-order
FrFT as

s(t) = exp(−i2πp0t)Cα(ρ)−1fa(ρ)

Similarly, the 2D extension of the reconstruction method
presented in Eq. 9 is

f̂ (u) =
N∑

n=1

| det(Bn)|s(tn)exp(−iπ[uTAnu − 2uTBnρn])
[A2]

or, expanding the matrix terms,

f̂ (u, v ) =
N∑

n=1

| csc αun csc αvn|s(tn)exp(−iπ[cot αunu2

+ cot αvnv2 − 2ρun csc αunu − 2ρvn csc αvnv ]).

APPENDIX B: SAMPLING ERRORS

In practice, there is a degree of uncertainty on the estimated
values tn and kn for the ρ–α space. In the following analy-
sis, differences between the real and estimated values are
denoted as δtn and δkn respectively. Additionally, the esti-
mation of the values for p2, p1, and p0 will also introduce a
degree of uncertainty. The difference between the real and
estimated value is denoted as δp2, δp1, and δp0, respec-
tively. To perform an accurate analysis and reconstruction
using the proposed method, it is important to determine
the impact of these uncertainties on the computed values
ρn and αn. From Eq. 5, the uncertainty δαn on αn will be, to
first order

δαn = 2p2

1 + 4p2
2t2

n
δtn + 2tn

1 + 4p2
2t2

n
δp2

The first term decreases quadratically in time, with val-
ues proportional to the errors in measuring tn, whereas the
second term decreases linearly in time, and achieves a max-
imum value δp2/2p2, i.e., one-half of the relative error in
measuring p2. The uncertainty δρn in measuring ρn will be,
to first order

δρn = sin αnδkn + tn sin αnδp1

− 4
p2tn(kn + p1tn)(p2δtn + tnδp2)(

1 + 4p2
2t2

n

)3/2

It is clear that the first term remains bounded and pro-
portional to the error in measuring kn. The second term
produces an error that increases in time proportionally to
the uncertainty in measuring p1. Finally, the third term
behaves as O(knt−2

n ) with respect to δtn, O(t−1
n ) with respect

to δtn and O(1) with respect to δp2.
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