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Confocal 3D reflectance through
multimode fiber without wavefront
shaping

1. DETAILED DESCRIPTION OF EXPERIMENTAL SETUP

All experiments used a 1-m-long step-index MMF with 105 µm core diameter and a NA of 0.22
(FG105LCA, Thorlabs) that theoretically supports∼ 550 guided modes per polarization. The fiber
was coiled with a minimum radius of curvature of ∼ 50 mm. The monochromatic calibration
matrix T was measured by sequentially probing the MMF input channels, while holographic
detection was used for all output channels concurrently, as depicted in Fig. S1(a). Each input and
output channel included two orthogonal polarization states: horizontal (H) and vertical (V). To
alternate the illumination polarization between H and V, a laser beam (λ = 1550 nm and linewidth
< 100 kHz) was linearly polarized and passed through a fiber-based electro-optical phase retarder
(PR, Boston Applied Technologies). The laser was steered by a two-axis galvanometer scanning
stage (GM, GVSM002-US, Thorlabs), and then focused by an objective lens (Plan Apo NIR Infinity
Corrected, Mitutoyo) with a NA of 0.4 into a 2.5 µm full-width at half maximum (FWHM) spot on
the proximal facet of the MMF. The angular spectrum of the spot exceeded the NA of the MMF to
ensure efficient population of all modes. The focal spot position on the proximal input side was
indexed by u and the speckle pattern exiting on the distal side was imaged with another identical
objective lens and a tube lens ( f = 30cm) onto an InGaAs camera (OW1.7-VS-CL-LP-640, Raptor
Photonics) with exposure time of 20 µs at 120 frames per second. The distal channel in real-space
was indexed by ν. The object plane of the distal imaging system determined the calibration plane,
which was approximately 100 µm away from the distal facet. We define d as the distance of the
OP away from the MMF distal facet (at d = 0). A beam displacer (BD40, Thorlabs) was used in
front of the camera to spatially separate the output into H and V polarization states. An angled
plane reference wave polarized at 45◦ independently interfered with the two speckle patterns
on the camera to record the speckle field amplitude and phase through off-axis holography in
both detection polarization states simultaneously. Images of the two polarization states were
demodulated, spatially registered, and flattened into a column vector of T directly in the Fourier
domain, with output channels at (kx, ky) indexed by νF. To uniformly probe all the MMF’s guided
modes, transmission was recorded for an oversampled grid of input spot positions u within the
core region, typically ∼700 points for each input polarization state, sequentially generated by
driving the GM and PR. The total acquisition time was 20 seconds. The input and output spatial
channels of T have been ordered first by spatial coordinate, then by polarization. Applying
singular value decomposition on the measured T, we determined the number of MMF supported
modes to be 550 per polarization state, consistent with the theoretical model.

In imaging experiments, as illustrated in Fig. S1(b), a sample was placed in front of the MMF
distal tip (b-1) and the round-trip M was measured from the proximal side (b-2). We again
sequentially coupled light into the MMF through the same set of proximal input states. Light with
a power of 0.5 mW exited the distal facet and propagated towards the sample, where part of the
light backscattered and coupled back into the same MMF. On the proximal side, we recorded the
round-trip light transmission by decoupling its path from the illumination with a non-polarizing
beam splitter and directing it to the same off-axis holography setup. The exposure time was set in
the range 200-1000 µs depending on the sample. A complete round-trip sample measurement
was acquired in 20 s. To preserve the symmetry between the illumination and the detection
configurations and to obtain a square matrix M, we sampled the recorded complex output fields
at the ordered positions identical to the set of input states. The matrix M was then constructed
with the same procedure that was used to find T. Numerical corrections to compensate for the
physical misalignment were then applied to the output channels of the measured M to accurately
match the input channels and recover the underlying transpose symmetry as previously described
[1].
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Fig. S1. Measurements of the MMF TMs. The fiber, although drawn as if it were straight, was
in fact coiled in experiments. The red arrows correspond to light pathways, and the dashed
ones indicate reflected light traveling from the sample through the MMF in the reverse di-
rection to the proximal detection. BD: beam displacer, BS: non-polarization beam splitter,
Ref.:reference wave, Cam.: camera, S: sample. A focused spot was scanned with the GM across
positions indexed by u distributed over the MMF proximal input facet and alternating between
H and V polarizations by means of the PR. The output field was split into two orthogonal po-
larization states by the BD, and interfered with matching reference waves for simultaneous
recording. (a) In the calibration phase, the camera records the transmitted speckle pattern inter-
fering with the reference wave in spatial coordinates (x, y) (rightmost insets). In the Fourier do-
main, we isolated the demodulated complex-valued signals in momentum coordinates (kx, ky)
confined to a frequency band imposed by the fiber NA and rearranged them into a column
vector of T, as indicated by the solid vertical line, color-coded in magenta and cyan for the H
and V polarizations, respectively. The forward transmission T has rows and columns indexed
by νF and u, respectively, and was ordered first by the spatial modes, and then by polarization
states. Only a subset of T is shown here. The color map encodes complex values. (b-1) In the
imaging phase, light backscattered from distal OPs at varying d from the fiber facet. Free-space
propagation, modeled by H, is a diagonal matrix in νF where it defines a quadratic phase in the
Fourier domain. (b-2) The detected images were demodulated into complex-valued images of
the proximal output speckle in spatial coordinates (x, y), then down-sampled at the positions of
the input foci (shown as white markers in the dashed magenta and cyan boxes) following the
same ordering as for illumination, and flattened into column vectors of the square matrix M.
M thus has rows and columns indexed both by u. Only a subset of M is shown here. The scale
bars in the insets are 20 µm.

2. RESOLVING AXIAL INFORMATION WITH NUMERICAL REFOCUSING

For a sample with volumetric structures, under weakly scattering regime and the Born approxi-
mation, we can express the total light reflection counting from the calibration plane (z = 0) as a
summation of backscattering fields contributed from N individual OPs at varying axial positions,

N

∑
i=1

HT(zi)R(zi)H(zi). (S1)

H is a unitary TM modeling the loss-less free-space propagation from the calibration plane to the
OP. Due to the unitary matrix properties,

H–1 = H† and H–T = H?, (S2)

where the superscript –1, –T, †, and ? indicate true inverse, true inverse of transpose, Hermitian
transpose, and conjugate, respectively. Note that H simply reduces to an identity matrix when
z = 0. According to Fresnel diffraction theory under paraxial approximation, the transfer function
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of a free-space propagation is a convolution kernel in real space, or a multiplicative quadratic
phase term in the Fourier domain. Depending on the distance, z, of a selected OP, we can compute
the Fourier phase term accounting for the propagation process

F(kx, ky, z) = exp(
−iz(k2

x + k2
y)

kn
), (S3)

where kn is the wavenumber in the given medium and kx and ky are the coordinates in the
in-plane momentum domain. The matrix H(z) in Fourier domain is then a diagonal matrix and
incorporating it into T through left-multiplication extends the output of T to the OP at z. Note that
z/kn = zn/k0, where k0 is the wavenumber in n = 1, encodes the optical path length, which is the
physical thickness of the medium multiplied with its refractive index n, and H is parameterized
only by z and independent of fiber shape and T. Plugging Eq. S1 into Eq. 1 and then into Eq.
2, and substituting respectively T–1(tik) with T–1(tik)H†(z) and T–T(tik) with H?(z)T–T(tik) using
Eq. S2, we have a new transpose-symmetric reflection matrix R with input and output channels
shifted to z

R̃(z) = H–T(z)T–T(tik)MT–1(tik)H–1(z) ≈
N

∑
i=1

H–T(z)HT(zi)R(zi)H(zi)H
–1(z), (S4)

which is the same as Eq. 2. If we set z = zj, Eq. S4 becomes

R̃(zj) ≈ R(zj) +
N

∑
i 6=j

H–T(zj)H
T(zi)R(zi)H(zi)H

–1(zj), (S5)

where we isolate the in-focus from the out-of-focus matrices. Assuming the out-of-focus reflective
planes are separated from the in-focus plane by much more than a depth of focus, and the total
background energy is uniformly distributed over all spatial channels, we can approximate the
summation of out-of-focus terms in Eq. S5 as a complex matrix with random phases but a constant
amplitude. Collecting the on-diagonal elements of R̃(zj) hence leads to signal predominance by
the en face reflectivity at z = zj and suppression of out-of-focus signals, or background rejection.
In short, after measuring M, by obtaining R̃ at intended axial position following Eq. S4 and then
applying Eq.3 , we can digitally shift to the jth OP and image the en face reflectivity at z = zj
without repeated measurements.

3. DIGITAL RESAMPLING OF IMAGE PHYSICAL AND DIGITAL DIMENSIONS

The light transport through a MMF and interaction with a distal sample can be well modeled with
measured TMs, which contain full complex propagation information of wave-vectors within the
NA of the MMF. While the experimental T has output channels stored in Fourier domain, with
an one-time measured M in the imaging phase, arbitrary resampling of 2D image dimensions
and also digital adjustment of image size on any selected OPs can be readily configured based on
Fourier relations. This offers flexible trade-off between image processing speed and accuracy in
a pragmatic circumstance: a lower resampling rate or smaller physical dimension reduces the
computational burden, which is suitable for a faster image preview, whereas a higher resampling
rate produces a detailed and smooth image at the expense of longer processing duration. Here,
we quantify the trade-off by timing the image processing on a personal computer with a 3.4 GHz
Intel Core i7 CPU and 16 GB RAM using MATLAB.

For an arbitrary setting of image physical and digital dimensions, we upsampled the output
spatial channels of T in the Fourier domain by interpolation, and pre-computed an inverse
discrete Fourier Transform (iDFT) matrix for converting the distal channels to resampled real-
space coordinates during the 2D real-space image reconstruction. We focus on the upsampling
that corresponds to a valid augmentation to the initial pupil size on the calibration plane (∼105
µm in diameter). Note that the interpolation of T output channels and the calculation of iDFT
matrices are performed prior to actual image formation processes. The necessary computation
of images on an OP involves application of phase terms to T outputs for intended numerical
refocusing, distal spatial channels conversion into real-space coordinates with the prepared iDFT
matrix, left and right multiplication of M with regularized inversion of extended backward and
forward TMs following Eq. S4 to retrieve R̃, and reshaping back to a 2D image using Eq.3.

In the experiment, the initial T had output channels accounting for 247× 247 square area of
camera recording pixels conjugating a physical size of 123× 123 µm2, and the resolution chart
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Fig. S2. Computation time and quality of confocal images as a function of physical and digital
image size. We only show intensity images in a single polarization state since the sample is
binary and isotropic. The time in second is color coded.

as sample was placed on an OP at d = 10, 600, 1200 µm away from the facet. For each imaging
setting, we timed only the necessary computation. As shown in Fig. S2, the computation for
co-polarization 2D confocal images at d = 10 µm with original dimensions and size takes ∼58.2
sec. To reduce computation complexity and complete image formation in a shorter time, we can
down-sample the image dimensions to 32× 32 in the same physical extent, resulting in pixelated
images on OPs at d = 10 µm calculated within ∼5.2 sec. For images on an OP at d = 1200 µm
from the distal MMF facet, illuminating light diverges, and a larger configured image physical
dimension is needed to avoid image clipping. For instance, the computation time of 32× 32
confocal intensity images covering 247× 247 µm2 on the OP at d = 1200 µm is ∼ 11.2 sec. Table
S1 summarizes the computation time of individual settings.

computation time (sec)

physical size (µm)\digital dimension 32 64 123 247

123 5.2 7.9 17.5 58.2

184 7.4 13.7 28.5 114.81

247 11.2 20.3 39.9

Table S1. Computation time of confocal images considering different image configuration
settings.

4. 3D RESOLUTION AND FIELD OF VIEW

To calculate the theoretical lateral and axial resolution, we need to first compute the effective NA,
NAeff , specific to an OP at an axial position. While the effective NA may also be dependent of the
lateral displacement from the optical axis, we only consider an on-axis point object on the OP for
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Fig. S3. Illustration of effective NA for an on-axis point object (red dot) on an OP (a) within
and (b) beyond the MMF focal length. The dotted line indicates optical axis. (c) The simulated
beam divergence at d = 600 µm with experimental T, and the circular blob diameter asso-
ciates with the imaging FOV. The plotted radius-wise mean intensity in logarithmic scale with
defined threshold determines the expected FOV on the OP at d. The scale bar is 100 µm.

convenience. Given the object at a distance d away from the MMF facet, the effective NA can be
calculated from the maximal angle formed with the point as the vertex and marginal rays within
the MMF acceptance angle as sides, as illustrated in Fig. S3(a) and (b). When d is within the focal
length of the MMF, Ω ∼ ηD/2NA, a full NA can be obtained, which is determined during MMF
fabrication. Here, η is the medium refractive index, and θa is the fiber acceptance angle. Once d is
larger than this range, only a partial NA can be achieved due to the limited MMF diameter. The
value of effective NA is summarized as

NAeff =

{
NA, if d <

ηD
2NA .

∼ D
2d , otherwise.

(S6)

Given the effective NA, we can then compute the expected lateral and axial resolution as in
confocal microscopy [2]

δx =
0.4 λ

NAeff
(S7a)

δz =
1.4 η λ

NA2
eff

, (S7b)

where we see that the axial resolution has a strong dependence on the system NA.
With the circular symmetry of the fiber core shape, we can define the FOV on an OP as the

diameter of a circular area with circumference from furthest off-axis points having normalized
confocally detected intensity dropped below 1% threshold. Using the measured T of the MMF,
we can free-space propagate each output light field per input to an OP and incoherently sum
all output light intensity over each input realization. This results in a circular blob on the OP
indicating the average illumination power at each spatial channel. Taking the spatial-channel-
wise intensity square of the blob informs confocally detectable power, as shown in Fig. S3(c),
where the OP is 600 µm away from the MMF distal facet. The low light coupling efficiency at
FOV peripheral causes the vignetting effect on reconstructed images, and the quantified FOV has
∅∼260 µm by applying the threshold to plotted radius-wise mean intensity.

5. RECONSTRUCTING CONFOCAL IMAGES FROM PARTIAL TM MEASUREMENT

In the imaging phase, we can reconstruct confocal images from the round-trip measurement of M
by obtaining the reflection matrix, R̃, processing its elements, and reshaping into 2D real-space
coordinates at a selected OP. While the measurement of a full M by sequentially coupling light
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into all MMF proximal channels delivers maximal information of the distal sample bounded
by the MMF throughput, intermediate confocal images for preview can also be reconstructed
from a round-trip measurement with partial set of input realizations, M̈, which is a subset of M
containing constituent column vectors, leading to a rectangular matrix. As illustrated in Figure
S4(a), with M̈, we can reconstruct a speckled image on an OP from a computed reflection matrix, R̈,
by respectively left and right multiplying M̈ with full T-T(tik) and T̈-1(tik), which is the regularized
inverse of a subset of T with constituent column vectors at input channels corresponding to
M̈. Physically speaking, the image derived from the partial measurement corresponds to the
distal sample under statistically non-uniform illumination. Using confocal intensity images I
for demonstration here, we define the completeness of an intermediate image as the normalized
intensity correlation, C, with the final image reconstructed from full M measurement,

C =
∑x,y Ii(x, y)I f (x, y)

∑x,y Ii(x, y)∑x,y I f (x, y)
, (S8)

where Ii and I f are intermediate and final images, respectively. The completeness arrives at
C = 1 when Ii = I f . Figure S4(b) shows examples of intermediate images with their quantified
completeness. Here, the sample is a resolution chart, and the full M is a 1354-by-1354 square
matrix. We assume that the 1354 proximal input spots uniformly couple to the 1100 MMF
guided modes and define the compression ratio as 1−m/1354, where m is the number of input
realizations. We tested two input channel sampling orders: the original proximal scanning spot
basis order (blue curve) and a random sampling order (orange curve). From the plot, we can
see that the completeness quickly improves with the number of input realizations and achieves
0.9 with ∼200 and ∼80 input realizations, which are only ∼15% and ∼5.9% of the total number
of realizations (85.2% and 94.1%compression ratio) in the two ordering conditions, respectively.
The random sampling order has a steeper completeness compared to the original since any input
channel is less correlated with the next. The intermediate images start from speckled pattern and
evolve to clean and high-contrast final confocal intensity image.

6. 3D CONFOCAL IMAGES WITH VARIOUS CONTRASTS

To demonstrate 3D imaging of biological samples through the MMF based on numerical refo-
cusing, a sample with multiple layers was prepared following similar volumetric reconstruction
experiments performed by others [3–5]. A proximal reflectance measurement of M through the
MMF included reflectance from multiple layers of a sample, shown in Fig. S5(top), including
buccal epithelial cells deposited on both surfaces of a glass coverslip with thickness of ∼200
µm, placed at d = 120 µm in air. From this single M, 3D volumetric imaging was computed by
numerical refocusing and image reconstruction. The depth-dependent γ plot was consistent with
the physical location of each reflective interface, considering the refractive indices of each layer
(1.44 in glass). High-resolution confocal images with intensity, phase, and scattering contrasts
were computed at the two individual coverslip surfaces (d = 120 and 320 µm). Note that in
complex samples, because optical phase accumulates as light is reflected from further into the
sample, the phase of shallower cells is overlaid on deeper-lying cells.
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