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Abstract
Purpose – In medical applications, it is crucial to evaluate the geometric accuracy of rapid prototyping (RP) models. Current research on evaluating
geometric accuracy has focused on identifying two or more specific anatomical landmarks on the original structure and the RP model, and comparing
their corresponding linear distances. Such kind of accuracy metrics is ambiguous and may induce misrepresentations of the actual errors. The purpose of
this paper is to propose an alternative method and metrics to measure the accuracy of RP models.
Design/methodology/approach – The authors propose an accuracy metric composed of two different approaches: a global accuracy evaluation
using volumetric intersection indexes calculated over segmented Computed Tomography scans of the original object and the RP model. Second, a local
error metric that is computed from the surfaces of the original object and the RP model. This local error is rendered in a 3D surface using a color code,
that allow differentiating regions where the model is overestimated, underestimated, or correctly estimated. Global and local error measurements are
performed after rigid body registration, segmentation and triangulation.
Findings – The results show that the method can be applied to different objects without any modification, and provide simple, meaningful and precise
quantitative indexes to measure the geometric accuracy of RP models.
Originality/value – The paper presents a new approach to characterize the geometric errors in RP models using global indexes and a local surface
distribution of the errors. It requires minimum human intervention and it can be applied without any modification to any kind of object.
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1. Introduction

Rapid prototyping (RP) is a technique that was introduced in

mechanical engineering for producing three-dimensional (3D)

physicalmodels of objects. RP is used inmedical applications to

construct realistic replicas of biological structures (also known

as RP models), being the most common application the

construction of bone models. RP models have been used for

surgical planning, prosthesis design, assisted diagnosis, and

teaching purposes (Choi et al., 2002; Silva et al., 2008;

Schicho et al., 2006; Russett et al., 2007; Ngan et al., 2006).

The construction of RP models typically consists of four

steps (Figure 1):

1 The object is scanned using a volumetric medical imaging

technique, usually computed tomography (CT) or

magnetic resonance imaging.

2 The object of interest is segmented out from the acquired

image.

3 The surface of the segmented object is triangulated to

generate a piece-wise continuous surface model, which is

then exported into an STereoLithography (STL) file.

4 The model is built from the STL file using one of the

existing RP techniques.

Unfortunately, each step of this process introduces several

errors (e.g. voxelation, segmentation errors, piecewise linear

smoothing by the triangulation, deformations due to calibration

errors of the manufacturing system), so the resulting RP model

is not geometrically identical to the object.
The current issue and full text archive of this journal is available at

www.emeraldinsight.com/1355-2546.htm

Rapid Prototyping Journal

18/6 (2012) 431–442

q Emerald Group Publishing Limited [ISSN 1355-2546]

[DOI 10.1108/13552541211271974]

This work has been supported by Fondecyt 1100864, Anillo ACT79 and
Fondef D06I 1026.

Received: 20 January 2011
Accepted: 7 May 2011

431



The accuracy of RP models is crucial in medical applications,

hence, having a reliable error metric is essential to evaluate

the final product. Most of the documented methods use

linear distances between anatomical landmarks to quantify

these geometric errors (Choi et al., 2002; Silva et al., 2008;

Schicho et al., 2006; Russett et al., 2007; Nizam et al., 2006;

Knox et al., 2005; El-Katatny et al., 2010). For example,

Choi et al. (2002) implemented a procedure by identifying

two or more relevant anatomical landmarks and locating them

on the object and on the corresponding places in the RP

model. They measured the linear distances between

landmarks in the object and compared these distances to

the ones obtained from the RP model.

Despite their extensive use, methods that use landmarks to

quantify geometric errors have three disadvantages.

First, they require an experienced person who needs to

identify manually and precisely a set of relevant anatomical

features for the specific object. There are significant intra- and

inter-observer differences placing the landmarks. In order to

alleviate intra-observer effects, Choi et al. (2002) and Silva et al.

(2008) needed to average over 20 different distance

measurements of each landmark pair in their RP accuracy

studies. Mallepree and Bergers (2009) proposed a method to

quantify the accuracy of RP models that uses a coordinate

measuringmachine (CMM) tomeasure 23 landmark pairswith

six iterations per measurement. CMM significantly improves

the accuracy of measuring spatial coordinates of specific

points, and allows comparing precisely the location of

the selected landmarks. However, those landmarks still need

to be located (with a probe) by a human operator and

consequently, the process is still prone to have inter- and intra-

observer variability. As any point-based approach, CMM-

based methods do not offer a dense amount of data to analyze

the entire surface. Elkott and Veldhuis (2007) showed that the

point sampling rate could be increased using continuous-

contact probing systems, which allow acquiring dense data

along a curved path traced by the user. Importantly, CMM can

only measure external surfaces strictly convex or with minor

concavities, otherwise there are regions that cannot be reached

by the CMM probe. This is an important restriction for in vivo

medical applications since there are several inner surfaces that

may need to be evaluated (e.g. whenmeasuring the thickness of

the skull).

Second, even if landmarks were perfectly located, error

metrics based on linear distances would still suffer from

inherent ambiguities and could lead towrong conclusionswhen

they are used to quantify volumetric errors. Figure 2 shows

some examples of these ambiguities. For instance, if in the RP

model two landmarks are erroneously displaced in the same

direction and samemagnitudewith respect to the original object

(Figure 2(a)), the distance between them would not change, so

no error would be detected. Alternatively, if only one landmark

is misplaced (Figure 2(b)), the method would detect an error,

but without identifying which landmark is in the wrong

position. Another ambiguity occurs depending onwhere theRP

model is measured. For instance, an overestimated doughnut-

like object (Figure 2(c)) would present an increased linear

distance (2R þ a) in the outer diameter, whereas the inner

diameter would show a decreased linear distance (2r 2 a),
despite of the underlying geometric error being the same.

Third, when landmark-based methods are used to encode

global geometric errors (i.e. a number that represents the total

error of the RP model), the common approach is to take the

mean and standard deviation of the differences between an

arbitrarily chosen number of landmark distances. This

produces an uneven comparison between different objects

since the number of landmarks tends to vary across objects.

In summary, landmark-based methods have intrinsic and

inevitable ambiguities, and result in error estimates that,
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depending on the object, the type of distortions and the

number of measurements, could be inaccurate.

Germani et al. (2010), Wang et al. (2010), Ciocca et al.

(2009) and Meakin et al. (2004), used a slightly different

accuracy evaluation method that considers a colored surface

representation to show local errors of the RP models. In

general, this approach consists of taking two point clouds

(one from the surface of the evaluated object and another from

the RP model), finding the overlapped region and computing

the magnitude of the distance between each point of one cloud

to the nearest point of the other cloud. The surface of the object

is then rendered using different colors that encode the

computed distances. Despite of providing a notion of the

surface local errors, this approach does not give any

information about the error direction. Thus, one cannot

discriminate overestimated from underestimated surfaces.

Considering these issues, we propose new metrics and a

novel method to estimate geometric errors of RP models

based on image processing techniques. In our approach we

use two metrics to evaluate independently the global error

(indexes that represent the total error of the RP model) and

local errors (error distribution along the surface of the RP

model). For global accuracy, we propose to use volumetric

intersection indexes computed over scans of the object and

the RP model. The purpose of this is twofold: to provide a

more accurate measure of error by simple and meaningful

indexes that take into account volumes, avoiding thus the

ambiguities present in methods based on linear distances; and

to privilege automation, as only little human intervention is

needed. For local accuracy, we propose to use a 3D surface

map with a color code that indicates if each region of the RP

model overestimates, underestimates, or correctly estimates

the surface of the original object. Furthermore, by means of

an intensity code, we are able to quantify the local error in

each region of the RP model.

2. Materials and methods

In this section, we present our method for the analysis of

geometric errors in RP models. First, we show how the RP

models were constructed from cadaveric bones and from

phantoms in which we controlled the geometric errors. Second,

we describe the different steps to acquire and process the data.

Finally, we present how the global and local metrics are

computed.

2.1 RP models construction

We generated two analytical phantoms, designed with the

software CATIAe v5 R14 (Dassault Systèmes, Vélizy-

Villacoublay, France):

1 a sphere with radius 2.5 cm (Figure 3(a)); and

2 a sphere with the same radius with two cylindrical defects,

one of them added volume (Figure 3(b)) and the other

subtracted the same volume (Figure 3(c)), so as to keep

the same volume of the original sphere.

The radius of both cylinders was 0.7 cm. The height of one of

them was 1 cm and we found the other height by preserving

the sphere volume, resulting in a slightly smaller height. The

added and subtracted volumes were equal to 1.478 cm3,

i.e. 2.26 percent of the total volume.

We also built RP models of cadaveric bones obtained

from the Department of Anatomy of our university.

For our experiments we used five bones: a humerus portion,

an ulna, and three metacarpal bones. Two examples are

shown in Figure 4.

The RP models were constructed from CT scans

(GE HiSpeed Dual) obtained with the following parameters:

80 kV, 80mA, matrix resolution of 512 £ 512 and slice

thickness of 1 mm. The field of view was adjusted on each

experiment so that to optimize the in-plane image resolution.

Data were processed using a standard software application for

RPmodels (Mimicse12,Materialisew, Leuven, Belgium). This

software had a manual thresholding-based segmentation and

some basic region growing-based tools to edit the results of the

segmentation. From this segmentation, the software generated a

triangulated surface using the following parameters: in-plane

resolution and thickness identical to those from the CT scan;

two iterations of smoothing with a smooth factor of 0.3; triangle

reduction using advanced edge mode, using a tolerance of

0.0122mm, edge angle of 108 and three iterations. The

triangulation, saved as an STL file, was exported into a ZPrinte

software. Subsequently, the data were re-sliced with resolution

of 0.089mm and built in the same slice direction of the CT,

using a ZPrintere Spectrum 510 system (ZCorporation,

Franklin, Massachusetts, USA), with a resolution of

600 £ 540dpi. For our experiments, the RP models were not

infiltrated.

To run blind experiments, an independent operator

performed the whole RP building process of all the studied

objects. This operator did not participate in the evaluation

process, which will be described in the following sections.

2.2 Data processing of RP models

Our proposed accuracy metrics were computed after the

following image processing steps (Figure 5). Once the RP

model was built, we performed a CT scan of it using the same

parameters previously defined for the CT of the object. We

used these parameters as they showed the best results in terms

of image quality. At this point we had two sets of medical

images, one from the object and another from the RP model.

In order to have voxel-to-voxel spatial correspondence, we

registered both CTs using a rigid body algorithm based on

mutual information (Wells et al., 1996) available in the

software application SPM (www.fil.ion.ucl.ac.uk/spm

accessed on 11 January 2011). The registered images were

segmented using a 3D active contour without edges (ACWE)

algorithm (Chan and Vese, 2001) implemented in a home-

made application using MATLAB 7.8.0 (Mathworks, Natick,

Massachusetts, USA). This is a level set-based segmentation

technique, which is formulated using a Mumford and Shah

(1989) functional. Basically, the idea of the algorithm is to

evolve an interface that divides the image into two

homogeneous regions. This is solved minimizing the energy

functional:

Fðc1; c2;CÞ ¼ m ·AreaðCÞ þ n ·VolumeðinsideðCÞÞ

þ l1

Z

insideðCÞ

u0ð~xÞ2 c1j j2d~x

þ l2

Z

outsideðCÞ

u0ð~xÞ2 c2j j2d~x

ð1Þ

where C corresponds to the surface that describes the

interface, u0(~x) corresponds to the 3D image, c1 and c2 are the

average intensity of u0(~x) inside and outside of C, respectively.

Additionally, m, n, l1 and l2 are fixed parameters chosen by
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the user and they represent the weights of each term in the

objective function. The first term of the equation (1) forces

the surface C to be smooth. The second term minimizes the

volume inside C, but having a minimal volume is not usually

desired so typically n ¼ 0. The third and fourth terms force C

to be located such that the interior and exterior regions are,

respectively, as homogeneous as possible.

The minimization of equation (1) is achieved by an iterative

method (Chan and Vese, 2001) consisting of a finite

difference discretization in the spatial domain and a forward

Euler time discretization which adds a Dt parameter that

represented the size of one time step of this method.

After a few tests in one slice of a bone and RP model, we set

the parameters as: m ¼ 0.01 £ 2552, n ¼ 0, l1 ¼ 1,

l2 ¼ 7(bone), l2 ¼ 1(RP model), Dt ¼ 0.01, 300 iterations,

nine iterations of re-initialization after the first iteration and

then every 101 iterations. We kept these parameters constant

for all our experiments. The only human intervention was the

initialization process, which consisted in defining an ellipsoid

that surrounded the entire object of interest. Once the

segmentation process ended, automatic morphological

operations were needed to extract only the exterior surface

of the object.

Finally, we generated a triangulated surface of both data

sets using the marching cubes algorithm (Lorensen and Cline,

1987). This algorithm analyzes the cubes formed by an eight-

point neighborhood of each voxel and assigns a binary value

to each vertex of the cube depending on whether it belong to

the object or to the background. There are 256 possible cases

for a cube and each of them corresponds to a pattern of how a

single or a set of triangles can intersect the cube. Actually,

only 14 triangular patterns are needed, since the rest can be

Figure 3
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obtained rotating or reflecting the triangles. The resulting

triangulations were then exported into an STL file.

2.3 Global accuracy metrics

Using the segmented images from the object and the RPmodel

we analyzed the global geometric error using three indexes

(Figure 6). The first index, A, was the normalized intersection

between voxels that belong to the object segmentation (Vb) and

to the RP model segmentation (Vm) (gray voxels in Figure 6):

A ¼

P

V b > Vmð Þ
P

V b

· 100 ð2Þ

We defined the normalized false positive (FP) error, i.e. voxels

that appear in the RPmodel segmentation but not in the object

segmentation ( ~Vb) (pink voxels in Figure 6), as:

FP ¼

P

~Vb > Vm

ÿ �

P

V b

· 100 ð3Þ

and the normalized false negative (FN) error , i.e. voxels that

appear in the object segmentation but not in the RP model

segmentation ( ~Vm) (purple voxels in Figure 6), as:

FN ¼

P

V b >
~Vm

ÿ �

P

V b

· 100 ð4Þ

2.4 Local accuracy metric

Using the surface triangulation (STL file) of the object and the

RPmodel, we analyzed the local geometric errors. The ideawas

to have an indication of how far apart were those surfaces. We

compared both triangulations computing a signed normal

distance of each triangle of the object to the nearest triangle of

the STL file of RP model. The surface of the model could be

overestimated (positive distance), underestimated (negative

distance), or well-estimated (zero distance). Each of these

classifications had a corresponding color: pink tones for FP,

purple tones for FN, and gray for well-estimated regions. Then,

the intensity was associated with the magnitude of the signed

normal distance. That information was rendered in a 3D

surface representation of the original object.

Figure 7 shows a general case, in which the object

triangulation is represented by the green triangle and the

RP model triangulation is represented by yellow triangles. We

compute the signed normal distance between each object’s

triangle (computed from the incenter ~Is) and the intersection

point (~P) of the nearest RP model triangle, represented in

blue. To compute the signed normal distances we proceeded

as follows:

1 Compute ~Is and ~Im, the triangle incenters of the object

and RP model STLs, respectively.

2 Compute n̂s and n̂m, the unit outer normal of the

triangles of the STL file of the object and RP model,

respectively.

3 Compute the plane that contains each triangle of the

STL file of RP model as:

axþ byþ czþ d ¼ 0 ð5Þ

where a, b and, c are known since n̂m ¼ ða; b; cÞ and d is

defined as:

d ¼ 2n̂m · ~Im ð6Þ

where · is the dot or inner product.

4 Define ~s, the normal straight line of each triangle of the

STL file of the object through ~Is as:

~s ¼ ~Is þ t · n̂s ð7Þ

where t is a free parameter.

5 Compute the intersection point P between ~s and the

plane that contains each triangle of the STL file of RP

model. This can be done evaluating equation (7) with

t equals to:

t ¼
2d 2 ~Is · n̂m

n̂s · n̂m
ð8Þ

6 Keep the intersection points P that belong to the

interior of any triangle of the STL file of RP model and

discard the rest. We considered that edges and vertices

belonged to the interior of the triangles.

7 Compute the signed normal distances as:

D ¼ I s 2 Pk k · signðtÞ ð9Þ

where k · k is the Euclidean distance, signðtÞ ¼ 1 denotes

an outer normal direction and signtðtÞ ¼ 21 denotes an

inner normal direction.

Figure 6

Figure 7
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8 As each ~s usually intersects more than one triangle, we

simply chose the distance D with the smallest magnitude

(Dm). At this stage, each triangle of the STL file of the

object has a corresponding signed normal distance Dm.

9 Generate a color code of 256 levels to show eachDm with

a corresponding color. The red, green and blue (RGB)

channels of the color code were defined as follows:
. Find the level that corresponds to the zero distance

with the proportion:

p ¼ floor 256 ·
minð ~DmÞ
�

�

�

�

�

�

minð ~DmÞ
�

�

�

�

�

�þ maxð ~DmÞ
�

�

�

�

�

�

0

B

@

1

C

A

where ~Dm is the vector that contains the signed normal

distances of all the triangles that belong to the object

and the function floor rounds to the nearest integers

towards minus infinity.
. The pth element, corresponding to the zero signed

normal distance, was defined as gray RGB ¼ [0.45

0.45 0.45]. We needed that the colormap gradually

changes its color for negative and positive distances, so

we assigned the blue channel for the negative distances

and the red channel for the positive distances.
. For negative distances we kept the red channel equal

to 0.45 and we defined the 256 elements of the blue

channel using:

BðiÞ ¼

0:55

minð ~DmÞ
þ 0:45 i ¼ 1 ; . . . ; p

0:45 i ¼ pþ 1 ; . . . ; 256

8

<

:

ð10Þ

. For positive distances we kept the blue channel equal

to 0.45 and we defined the red channel using:

RðiÞ ¼

0:45 i ¼ 1 ; . . . ; p2 1

0:55

maxð ~DmÞ
þ 0:45 i ¼ p ; . . . ; 256

8

<

:

ð11Þ

. The green channel of the colormap was G ¼ 0.45 for

all values. Different color codes can be constructed

by simply adjusting the coefficients of the straight

lines defined in equations (10) and (11).

3. Results

3.1 Phantom results

Figure 8 shows the result of the registration and the ACWE

segmentation of the original sphere and the sphere with

cylindrical defects. Figure 8(c) shows the superposition of the

segmentation represented by contours.

The segmentation algorithm based on ACWE worked

equally well on the original sphere (red contour in Figure 8(a))

and on the sphere with defects (green contour in Figure 8(b)).

By superposing both segmentations together (red and green

contours) onto the CT of the original sphere (Figure 8(c)), it

can be seen that there was no substantial differences between

them, except in the region of the introduced defect.

The global accuracy indexes of the spheres were: A ¼ 97.17

percent, FP ¼ 2.48 percent, and FN ¼ 2.83 percent, whereas

the expected indexes were 97.74 percent and FP ¼ FN ¼

2.26 percent.

The local error is shown in Figure 12(a). The region in red

represents the introduced FP cylinder defect. The maximum

and minimum signed normal distances were about 6

and 26mm, respectively.

3.2 Bone results

As can be seen from Figures 9 and 10, the registration and

segmentation worked well for all CT scans (only one slice of

two experiments are shown). Figure 11 shows the global

errors of each bone. It can be seen that there was a slight

geometric error in the RP models, as there was a consistent

overestimation in their sizes. Indeed, the amount of FPs was

greater than the amount of FNs, except for the metacarpal 3.

These percentages of FP and FN (Figure 11) represent the

global accuracy of RP models but they do not show

information about where these errors are located. Figure 12

shows our local error representation. As previously stated,

pink tones represented overestimated regions (FP), purple

tones represented the underestimated regions (FN) and gray

tones represented the correctly estimated regions. Except for

the metacarpal 3, the rendered surfaces showed mostly FP

errors. This was consistent with the computed global indexes.

Interestingly, the maximum deviation of FP was less than the

maximum deviation of FN (see the colorbars in Figure 12).

Moreover, in general FN were concentrated on specific zones

of the surface. The result of the metacarpal 3 was different

since FP and FN were equally distributed along the surface,

which was also consistent with the global error results.

3.3 Sensitivity analysis

We were interested in evaluating the impact in varying the

segmentation parameters in the global error calculation. As

mentioned in Section 2.2, we used the same parameters for

the original object and RP model segmentation, except for l2,
which was the most sensitive one. We therefore did a

sensitivity analysis varying each l2 in ^10 percent and

calculating the indexes A, FP and FN (Figures 13 and 14). We

tested our results with the humerus data sets.

Changes in l2 for the RP model segmentation produced

larger variations than for the object segmentation

(Figure 14(c)). However, variations were always ,0.05

percent of the total volume of the original structure.

4. Discussion

We have developed a novel metric and a methodology for

measuring the accuracy of RP models, specially suited for

medical applications and with a reasonably degree of

automation. Indeed, the entire evaluation process was done

with minimal human intervention, which only required for

the ellipsoid initialization of the segmentation process. The

proposed indexes are a simple and meaningful way to observe

the degree of global accuracy and the geometric errors of

the built RP model. Moreover, as a complementary metric, we

generated a local error representation that indicates how the

error is distributed along the RP model surface. The results

showed that both metrics were consistent.

For the construction of RP accuracy indexes it is necessary

to establish correspondence between the objects of interest

and their RP models. Until now alternative error metrics have

faced such problem by trying to establish corresponding

landmarks (sometimes referred as fiducials) on each structure

and applying a rigid body (Euclidean) transformation to them.
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However, landmarking processes are labor-intensive and

heavily depends on the ability of the operator to define

those corresponding points (Maes et al., 1997). In general,

the resulting correspondence between external fiducials is

poor (Meyer et al., 1996). Furthermore, measuring a few

landmarks does not give a good representation of the accuracy

of complex shapes, and local representations of errors are

needed (Germani et al., 2010).

We propose an alternative solution, as there is substantial

evidence that spatial correspondence can be better achieved

by searching the rigid body transformation that maximizes the

mutual information between images (Meyer et al., 1996;

Maes et al., 1997). The method is robust even when

there are intensity differences between the images that are

being registered. This is exactly our case as the image intensities

of bones and RP models are shown differently in the CT scans.

An additional justification to move away from landmark-

based error metrics, is their inherent ambiguity. As we showed

(Figure 2), there are some situations where such metrics

cannot not detect evident errors, they cannot discriminate the

exact location of the errors or, depending where is measured,

they show differently a single kind of error.

Another important issue is the chosen segmentation technique.

Preliminary tests showed us that a significant portion of

the geometric errors that we found in the RP models was

produced by the thresholding-based segmentation algorithm.

The threshold-based segmentations have the problem that

Choi et al. (2002) called the dumb-bell-like effect.

Figure 9
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Basically, choosing a smaller threshold than the ideal value

adds a volume layer, whereas choosing a larger threshold than

the correct one subtracts a volume layer. This is an inevitable

drawback, especially in bone segmentation, since the

detection of trabecular bone in most cases implies reducing

the threshold and therefore an overestimation of cortical

bone. In this scenario, we proposed the use of an active

contour-based segmentation, which is semi-automatic, robust

to the noise and combines geometric and intensity

constraints. Thus, this method showed advantages

compared to the threshold-based ones and allowed us to

make a fair comparison between two structures that have

different intensities.

From the computed results, it is interesting to observe that

the RP models tended to overestimate the size of the original

bone structure. In fact, the global accuracy indexes showed

that FP were consistently greater than FN, except for the

metacarpal 3. This might be due to the small size of this bone,

particularly in the slice direction. This might increase the

significance of the voxelation and volume averaging effects.

The local representation of error adds relevant information to

geometric accuracy evaluations. The most important

conclusions are two. On one hand, the amount of

underestimated surface, i.e. the FN (see the color bars in the

right side of Figure 12(a)-(F)) was usually concentrated in

particular regions. On the other hand, the amount of

overestimated surface, i.e. FP (surface of red color in

Figure 12), was distributed along most of the surface, which

confirms the results given by global indexes. An important

contribution of our method is that it not only quantifies the

error, but also shows where the error is located. This is an

important issue for medical applications, such as surgery or

prosthesis design, since geometric accuracy is particularly

relevant at specific regions where the object interacts with other

structures.

Similar local error representations could be achieved using

CAD software that offer comparing tools for meshes

(e.g. 3-Matice Materialisew, XOVe Rapidformw). These

software products typically use a point-based comparison

between overlapped regions of two-point clouds and compute

the distance between the nearest points from each cloud.

However, using these solutions present three important

restrictions. First, they do no integrate all the processes needed

for the accuracy evaluation (i.e. image-based registration,

active contour-based segmentation, triangulation, indexes

computation, local error computation and surface rendering),

so additional software tools must be integrated. Second, a

simple computation of the distance to the nearest point does not

show information about the geometry and orientation of the

error. It is necessary to define signed distances in order to

discriminate between underestimated and overestimated errors.

Third, measuring errors from point clouds works well for dense

point distributions or when those points correspond to triangle

vertices of similar triangulations (in terms of shape, smoothness

and distribution). Otherwise, measurements are affected by

point displacements, which are not necessarily geometric errors.

In this sense, our proposed method based on signed normal

distances provides a more natural and general framework to

analyze local geometric errors.

There are several sources that could explain the geometric

errors found in the RP models: those derived from the

scanning process (e.g. voxelation, volume averaging effects and

reconstruction artifacts); those derived from the pre-processing

stage (e.g. errors from the segmentation process, and from

the surface triangulation); and those derived from the

manufacturing process (e.g. miscalibration, voxelation effects

and re-slice and building orientation). Our methodology also

introduces additional sources of errors, such as potential

misalignments obtained from the registration process, image

interpolations involved in the registration process, and

segmentation errors derived from the chosen segmentation

algorithm (ACWE). However, the results with synthetic

phantoms showed that these additional sources of errors were

bounded and did not significantly affect our metric results.

Indeed, the phantoms were built synthetically by software, so

they did not contain errors from construction process (at least

from the CT scan, segmentation and triangulation), and the

computed error did not showed significant differences with the

synthetically introduced errors.

With our method for quantitative assessment of geometric

errors we have the tools to judge the accuracy of eventual

improvements for the construction process. In an image-

processing context, we believe that efforts to improve the

accuracy of RP models should be focused on the application

of more adequate segmentation strategies to process the

tomographic images of the original objects to be modeled.

Figure 11
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The segmentation tools available in standard RP software

applications (thresholding and region growing) offer great

advantages in terms of speed and simplicity, but they inevitably

introduce segmentation errors. Indeed, they are not robust to

noise and other commonly encountered artifacts in medical

images. Denoising and smoothing filters are typically used

to reduce this problem, with interesting results in term of

noise reduction. However, there is always a trade-off between

noise content and image blurring, which are both potential

sources of errors for standard segmentation algorithms.

Additionally, those standard segmentation algorithms involve

choosing heuristically some parameters (e.g. the magnitude of

the thresholds), which potentially introduces biases as in

medical imaging, the image contrast typically varies across the

field of view due to image artifacts.
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We are currently working on optimizing the codes, because

of the high-computational costs. Indeed, the processing time

varied from two hours for small data sets to 20 hours for

the largest one. Particularly, the processing time that needs to

be reduced is the local error metric time, which depends of

the number of triangles of the object. We are also working on

controlling the topology of the segmenting contour, such as in

Han et al. (2003), so that to avoid the morphological

corrections needed for the ACWE algorithm. This would

simplify and improve robustness of the segmentation process.
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